BayeSian Learning of SparSe MuLtiScaLe iMage repreSentationS BayeSian Learning of SparSe MuLtiScaLe iMage repreSentationS
نویسندگان
چکیده
Multiscale representations of images have become a standard tool in image analysis. Such representations offer a number of advantages over fixed-scale methods, including the potential for improved performance in denoising, compression, and the ability to represent distinct but complementary information that exists at various scales. A variety of multiresolution transforms exist, including both orthogonal decompositions such as wavelets as well as nonorthogonal, overcomplete representations. Recently, techniques for finding adaptive, sparse representations have yielded state-of-the-art results when applied to traditional image processing problems. Attempts at developing multiscale versions of these so-called dictionary learning models have yielded modest but encouraging results. However, none of these techniques has sought to combine a rigorous statistical formulation of the multiscale dictionary learning problem and the ability to share atoms across scales. We present a model for multiscale dictionary learning that overcomes some of the drawbacks of previous approaches by first decomposing an input into a pyramid of distinct frequency bands using a recursive filtering scheme, after which we perform dictionary learning and sparse coding on the individual levels of the resulting pyramid. The associated image model allows us to use a single set of adapted dictionary atoms that is shared—and learned—across all scales in the model. The underlying statistical model of our proposed method is fully Bayesian and allows for efficient inference of parameters, including the level of additive noise for denoising applications. We apply the proposed model to several common image processing problems including non-Gaussian and nonstationary denoising of real-world color images.
منابع مشابه
Image Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملLearning a collaborative multiscale dictionary based on robust empirical mode decomposition
Abstract. Dictionary learning is a challenge topic in many image processing areas. The basic goal is to learn a sparse representation from an overcomplete basis set. Due to combining the advantages of generic multiscale representations with learning based adaptivity, multiscale dictionary representation approaches have the power in capturing structural characteristics of natural images. However...
متن کاملLearning Multiscale Sparse Representations for Image and Video Restoration
A framework for learning multiscale sparse representations of color images and video with overcomplete dictionaries is presented in this paper. Following the single-scale grayscale K-SVD algorithm introduced in [1], which formulates the sparse dictionary learning and image representation as an optimization problem efficiently solved via orthogonal matching pursuit and SVD, this proposed multisc...
متن کاملLearning Sparse Multiscale Image Representations
We describe a method for learning sparse multiscale image representations using a sparse prior distribution over the basis function coefficients. The prior consists of a mixture of a Gaussian and a Dirac delta function, and thus encourages coefficients to have exact zero values. Coefficients for an image are computed by sampling from the resulting posterior distribution with a Gibbs sampler. Th...
متن کاملMultiscale Sparse Representations for Image and Video Restoration
This paper presents a framework for learning multiscale sparse representations of color images and video with overcomplete dictionaries. A single-scale K-SVD algorithm was introduced in [M. Aharon, M. Elad, and A. M. Bruckstein, IEEE Trans. Signal Process., 54 (2006), pp. 4311–4322], formulating sparse dictionary learning for grayscale image representation as an optimization problem, efficientl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014